油库质量流量计现场检定测量不确定度评定
摘要:使用静态容积法油流量标准装置对油库中用于成品油贸易计量的科里奥利质量流量计进行现场检定, 通过分别评定流量计测量重复性、计量温度下的油品体积、体积修正系数和油品计重密度 4 个分量的相对标准不确定度,合成得到被检流量计相对误差的测量不确定度。 根据测量不确定度评定结果可知,该静态容积法油流量标准装置符合计量检定系统表和检定规程的相关要求,可以用于油库准确度等级 0.2 级及以下质量流量计的现场检定。
科里奥利质量流量计是一种直接式质量流量仪表,它具有准确度高、稳定性好、量程比大、介质适应性强等特点, 且不受被测介质物理参数和管内流体流动状态的影响,能够实现对质量流量直接测量[1], 广泛应用于油库中成品油的计量。 依据 JJG 1038—2008《科里奥利质量流量计检定规程》,使用静态容积法油流量标准装置, 利用分项组合法对成品油贸易结算用科里奥利质量流量计进行现场检定, 并就被检流量计示值误差的测量不确定度进行评定。

1、概述:
1)测量依据:JJG 1038—2008《科里奥利质量流量计检定规程》。
2)环境条件:环境温度一般为 5~45 ℃,相对湿度一般为 35%~95%,大气压力一般为 86~106 kPa。
3)测量标准:二等标准金属量器(容积为 2 000
L),数字防爆温度计(分度值为 0.1 ℃),工作用玻璃液体温度计(分度值为 0.1 ℃),二等标准石油密度计,秒表(分度值为 0.01 s)。
4)测量对象:科里奥利质量流量计(0.2 级)。
5)测量介质:成品油。
6)测量方法:在规定的环境条件下,按照检定规程规定的测量程序, 以油库工况下固定的发油流量点发油,测量 3 次,计算得到被检流量计的相对示值误差。
2、数学模型及不确定度传播率:
2.1、数学模型:
为使测量结果不确定度评定过程更具逻辑性, 采用分步的方式构建数学模型[2-3]。
1)数学模型 1,计量温度下的油品体积(Vt):
Vt=V·s [1+βs(ts-20)] (1)
2)数学模型 2,油品在 20 ℃下的标准体积(V20):
V20=Vt ·VCF (2)
3)数学模型 3,考虑空气浮力修正后的油品计量密度(ρ):
ρ=ρ20-0.001 1 (3)
4)数学模型 4,油品在空气中的标准计重质量
(Qs):
Qs=V20·ρ (4)
5)数学模型 5,流量计相对误差(E):
E= Q-Qs ×100% (5)
Qs
式中:Vs 为标准金属量器读出容积,L;βs 为标准金属量器的体膨胀系数,℃-1;ts 为标准金属量器处液体温度 (计量温度),℃;VCF 为体积修正系数;
ρ20 为油品在 20 ℃下的标准密度,g/cm3;Q 为被检流量计累积质量流量,kg。
2.2、不确定度传播率:
不确定度传播率计算如下:
3、各输入量的标准不确定度:
3.1、计量温度下油品体积的相对标准不确定度:
依据数学模型 1 计算下列参数[4-8]。
3.1.1、 标准器引入的相对标准不确定度分量 u (V )
依据标准器的检定证书和 JJG 2024—1989《容量计量器具检定系统》规定,二等标准金属量器的扩展不确定度为 2.5×10-4,k=3。 因此:
u (V )= 2.5×10-4 =0.833×10-4。
r s 3
相对灵敏系数为:cr(l-1)= 坠Vt ·Vs =1。
坠Vs V
3.1.2、标准器体膨胀系数引入的相对标准不确定度分量 ur(βs)
标准金属量器的体膨胀系数 βs=50×10-6 ℃-1,查资料,其不确定度为 5×10-6 ℃-1,符合均匀分布。 因
此:ur(βs)= U =0.057 7。
βs 姨3
依据检定经验,考虑气候条件影响,检定时油库发油温度控制在(20±10)℃范围内。 取极限温度值: ts=30 ℃。
相对灵敏系数为:
cr(l-2)= 坠Vt · βs = β·s (ts-20) =5.00×10-4。
坠βs Vt 1+β·s (ts-20)
3.1.3、油温引入的相对标准不确定度分量 ur(ts)
依据数字温度计的校准证书, 温度测量值的扩展不确定度为 0.2 ℃,k=2。 取极温度限值:ts=30 ℃。
ur(ts)= 30×2 =3.3
相对灵敏系数为:
cr(l-3)= 坠Vt · ts = β·s ts =1.50×10-3。
坠ts Vt 1+β·s (ts-20)
3.1.4、相对标准不确定度 ur(Vt)
由数学模型 1 得到相对标准不确定度 ur(Vt):ur(Vt)= 姨cr(l-1)ur (Vs)+cr(l-2)ur (βs)+cr(l-3)ur (ts)=0.883×10-4。

3.2、密度测量和密度相关参数不确定度分析
依据 GB/T 1884—2000 标准中的方法, 使用二等标准石油密度计和工作用玻璃液体温度计, 分别测量油品的视密度(ρ′)和试验温度(t′),并查 GB/T
1885—1998 标准中表 59B 得到油品 20 ℃下的标准式中:c1= 坠E = 1 ;c2= 坠E =- Q ,则密度(ρ20)。 使用数字温度计测量标准金属量器内油
温(ts),查 GB/T 1885-1998 标准中表 60B 得到体积修正系数 VCF。 为减小因查表所引起的误差,查表所得的标准密度(ρ20)和体积修正系数 VCF 均使用双线性内插法求得。
3.2.1、油品视密度的标准不确定度 u(ρ′)
1)二等标准石油密度计的修正值引入的标准不确定度分量 u(ρ1)。 在油品密度测量时,密度计读数需要修正,依据检定证书(校准证书),其修正值的扩展不确定度 U=0.000 20 g/cm3,k=2。 因此:
u(ρ1)= 0.000 20 =0.000 10 g/cm3 。
2)密度计估读引入的标准不确定度分量 u(ρ2)。二等标准石油密度计的分度值为 0.000 5g/cm3,GB/ T 1884—2000 要求的读数间隔为分度值的 1/5, 按均匀分布计算。 因此:0.000 1 u(ρ2)= =5.77×10-5 g/cm3 。姨3
3)密度计倾斜读数引入的标准不确定度分量
u(ρ3)。 按照 JJG 86—2011 《标准玻璃浮计检定规程》的规定,浮计干管与液面间的垂直偏差不得大于
0.1 个分度值,服从均匀分布。 因此:
0.000 05
u(ρ3)= =2.89×10-5 g/cm3 。
姨3
4)密度计测量过程中油液温度变化引入的标准不确定度分量 u(ρ4)。 GB/T 1884—2000 规定,测量过程中油液温度***大变化为 0.5 ℃。 油液温度变化
引起的密度计示值变化为:Δρ=ρ′·Δt·β , 服从均匀
分布。 其中 ρ′取常用石油密度计的***大刻度 0.850
g/cm3,Δt 取***大允许温度变化 0.5 ℃,βM 为密度计体膨胀系数 25×10-6 ℃-1。u(ρ )= 0.850×0.5×25×10-6 =6.13×10-6 g/cm3。
5)密度计修正引入的标准不确定度分量 u(ρ5)。
依据 GB/T 1884—2000 要求, 对观察到的密度计读数进行修正后, 记录到 0.000 1 g/cm3。 修约间隔为0.000 05 g/cm3,服从均匀分布。 因此:.000 05=
6)合成标准不确定度 u(ρ′)。 计算结果如下:
u(ρ′)= 姨u2( ρ1)+u2( ρ2)+u2( ρ3)+u2( ρ4)+u2( ρ5)
=1.23×10-4 g/cm3 。
7)扩展不确定度 U(ρ′)。 油品视密度的扩展不确定度为:U(ρ′)≈0.000 3g/cm3,k=2。
3.2.2 试验温度的标准不确定度 u(t′)
1)工作用玻璃液体温度计引入的标准不确定度分量 u(t1)。 在油品试验温度测量时,温度计读数需
要修正,依据检定证书(校准证书),其修正值的扩展
不确定度为U=0.06 ℃,k=2。 因此:
u(t )= 0.06 =0.03 ℃。
2
2)温度计读数引入的标准不确定度分量 u(t2)。依据 GB/T 1884—2000 要求, 温度计读数时记录温度接近到 0.1 ℃。假设近似取值间隔为 0.05 ℃,服从
均匀分布。 因此:
u(t2)= 0.0 5 =0.029 ℃。
姨3
3)温度计修正引入的标准不确定度分量 u(t3)。依据 GB/T 1884—2000 要求, 对观察到的温度计读数进行修正后, 记录到接近 0.1 ℃。 修约间隔为
0.05 ℃,服从均匀分布。 因此:
u(t3)= 0.05 =0.029 ℃ 。
姨3
4)合成标准不确定度 u(t′)。 计算结果如下:
u(t′)= 姨u2( t )+u2( t )+u2( t ) =0.051 ℃。
5)扩展不确定度 U(t′)。 试验温度的扩展不确定度为:U(t′)≈0.1 ℃,k=2。
3.2.3 标准密度的标准不确定度 u(ρ20)
假设油品的视密度取值与 GB 19147—2016 和GB 17930—2016 标准中规定相同,则车用柴油和车用汽油标准密度分别为 0.810~0.850 g/cm3 和 0.720
~0.775 g/cm3。 假设试验温度取值和油库发油时的温度范围相同,为(20±10) ℃。
1)试验温度测量引入的标准不确定度 ut(ρ20)。根据上述计算,试验温度的扩展不确定度为 0.1 ℃。查 GB/T 1885—1998 表 59B,得到由此引入的标准密度***大变化为 0.000 1 g/cm3,服从均匀分布。 因此:
ut(ρ20)= 0.00 0 1 =5.77×10-5 g/cm3。
姨3
2)视密度测量引入的标准不确定度 uρ′(ρ20)。 根
据上述计算,视密度的扩展不确定度 0.000 3 g/cm3。
查 GB/T 1885—1998 表 59B,得到由此引入的标准密度***大变化为 0.000 3 g/cm3,服从均匀分布。 因此:
uρ′(ρ20)= 0.000 3 =1.73×10-4 g/cm3。
姨3
3) 标准密度计重复性引入的标准不确定度分量
uρ20(ρ20)。 参照标准 GB/T 1884—2000,两次测量结果的极差***大为 0.000 2 g/cm3。 ***终测量结果取两次测量结果的平均值。 因此:
uρ20(ρ20)= 0.000 2 =1.25×10-4 g/cm3 。
uρ20(ρ20)。 参照标准 GB/T 1884—2000,两次测量结果的极差***大为 0.000 2 g/cm3。 ***终测量结果取两次测量结果的平均值。 因此:
uρ20(ρ20)= 0.000 2 =1.25×10-4 g/cm3 。
1.13× 姨2
4) 合成标准不确定度 u(ρ20)。 计算结果如下:
u(ρ
)= 姨u 2(ρ
)+u 2(ρ
)+u
2(ρ )
=2.21×10-4 g/cm3 。
扩展不确定度 U(ρ20)
)= 姨u 2(ρ
)+u 2(ρ
)+u
2(ρ )
=2.21×10-4 g/cm3 。
扩展不确定度 U(ρ20)
5) 标准密度的扩展不确
定度为:U(ρ
20)≈0.000 5 g/cm3, k=2。
20)≈0.000 5 g/cm3, k=2。
3.2.4 油品计重密度的相对标准不确定度 ur(ρ)
由数学模型 3,可知:u(ρ)=u(ρ20),因此测量点的***大相对标准不确定度为:
由数学模型 3,可知:u(ρ)=u(ρ20),因此测量点的***大相对标准不确定度为:
ur(ρ)=
u(ρ20)
ρ
= u(ρ20) =
ρ20–0.001 1
2.21×10-4
0.720-0.001 1
=3.08×10-4。
3.2.5体积修正系数的相对标准不确定度 ur(VCF )
依据油品的标准密度(ρ20) 和计量温度(ts), 查
GB/T 1885—1998 表 60B 得到体积修正系数 VCF。
1)试验温度测量引入的标准不确定度 ut(VCF )。数字温度计的扩展不确定度 0.2 ℃。查 GB/T 1885—
1998 表 60B 得到由此引入的体积修正系数的***大变化为 0.000 32,服从均匀分布。 因此:
ut(VCF )= 0.000 32 =0.000 18。
姨3
2)标准密度测量引入的标准不确定度 uρ(VCF )。根据上述计算, 标准密度的扩展不确定度 0.000 5
g/cm3。 查 GB/T 1885—1998 表 60B 得到由此引入的体积修正系数的***大变化为 0.000 03, 服从均匀分布。 因此:
uρ(VCF )= 0.000 03 =0.000 02 。
姨3
3)合成标准不确定度 u(VCF ),计算结果如下:
u(VCF)= 姨u 2(VCF )+u 2(VCF ) =0.000 19。
4)体积修正系数的相对标准不确定度 ur(VCF )。体积修正系数的***大变化是在标准密度 0.720 g/m3, 计量温度 10 ℃附近取得。 因此:
ur(VCF )= 0.000 19 =1.83×10-4 。
1.012 70
3.3、油品在空气中的标准计重质量引入的相对标准不确定度 ur(Qs)
由数学模型 2、3、4,可得:Qs=V20·ρ=V·tVCF·ρ。
相对标准不确定度 ur(Qs)为:
ur(Qs)= 姨u 2(Vt)+u 2(VCF )+u 2( ρ) =3.69×10-4。
3.4、被检流量计累积质量流量测量结果的重复性引入的相对标准不确定度 ur(Q)选取一台常规的科里奥利质量流量计(0.2 级), 以油库工况下固定的发油流量点发油,测量 3 次,测量结果如表 1 所示。
测量结果的重复性引入的相对标准不确定度
为 :ur(Q)= Er = 0.045% =2.60×10-4 。
姨3 姨3
4、标准不确定度汇总:
根据上述测量不确定度评定过程, 将各输入量的标准不确定度进行汇总,如表 2 所示。
表 1 科里奥利质量流量计(0.2 级)工况发油流量点的测量结果
检定次数 | Q /kg | Qs /kg | Ei /% | E /% | Er /% | |||||
1 | 1 | 486.289 | 92 | 1 | 485.870 | 299 | 0.028 | 2 |
0.005 |
0.045 |
2 | 1 | 484.636 | 16 | 1 | 485.327 | 817 | -0.046 | 6 | ||
3 | 1 | 485.624 | 58 | 1 | 485.107 | 719 | 0.034 | 8 |
表 2 标准不确定度汇总表
序号 | 不确定度 | 来源 | 相对标准不确定度 ur(xi) | 灵敏系数 | ci | ci ·ur(xi) |
1 | ur(Q) | 被检流量计测量重复性 | 2.600×10-4 | 1 | 2.600×10-4 | |
2 | ur(Qs) | 标准计重质量 | 3.690×10-4 | -1 | 3.690×10-4 | |
3 | ur(Vt) | 计量温度下油品体积 | 0.883×10-4 | 1 | 0.883×10-4 | |
4 | ur(VCF) | 体积修正系数 | 1.830×10-4 | 1 | 1.830×10-4 | |
5 | ur(ρ) | 油品计重密度 | 3.080×10-4 | 1 | 3.080×10-4 |
5、合成标准不确定度:
各项相对标准不确定度分量彼此相互独立,依据不确定度传播率,求得合成标准不确定度为:uc(E)= 姨u 2(Q)+u 2(Qs) =0.045%。
6、扩展不确定度:
取 k=2, 则流量计累积流量相对误差的扩展不确定度为:U=uc×k=0.090%。
7、测量结果不确定度报告:
被检流量计工况下固定发油流量点的累积流量相对误差为 0.005%,其扩展不确定度为:U=0.090%,
k=2。
为简化评定过程,在计算灵敏系数时,未根据实测温度计算,而是直接取极限温度值;在密度测量和密度相关参数不确定度分析过程中, 未具体区分油品,而是直接取极限值进行评定。 在实际过程中,可根据具体情况评定上述分量, 获得更准确的测量结果不确定度。
8、结束语:
由测量不确定度评定过程可知, 现场检定的测量结果不确定度小于被检流量计***大允许误差的1/2。 该静态容积法油流量标准装置符合计量标准 JJG 2063—2007《液体流量计器具检定系统表检定规程》和 JJG 1038—2008《科里奥利质量流量计检定规程》的相关要求,可以用于现场检定准确度等级
0.2 级及以下的科里奥利质量流量计。